V = 1614.9 (5) Å³

Mo $K\alpha$ radiation

 $0.21 \times 0.19 \times 0.15 \text{ mm}$

7925 measured reflections

2830 independent reflections

1276 reflections with $I > 2\sigma(I)$

 $\mu = 0.96 \text{ mm}^{-3}$

T = 293 (2) K

 $R_{\rm int} = 0.112$

Z = 4

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(acetylacetonato- $\kappa^2 O_i O'$)(methanol- κO)(thiocyanato- κN)manganese(III)

Shuang-Ming Meng,* Hai Xie, Yue-Qin Fan and Yong Guo

College of Chemistry and Chemical Engineering, Shanxi Datong University, Shanxi 037009, People's Republic of China Correspondence e-mail: xhtgao@126.com

Received 7 September 2008; accepted 30 September 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.009 Å; R factor = 0.058; wR factor = 0.148; data-to-parameter ratio = 15.0.

In the title complex, $[Mn(C_5H_7O_2)_2(NCS)(CH_4O)]$, the Mn^{III} atom has a slightly distorted octahedral coordination formed by five O atoms and one N atom. The equatorial positions are occupied by four O atoms of two acetylacetonate ligands, while the axial positions are occupied by the N atom of the thiocyanate anion and the O atom of the methanol molecule. In the crystal structure, complex molecules are linked by an intermolecular O-H···S hydrogen bond, forming a chain running along [101].

Related literature

For the synthesis, see: Stults et al. (1975). For related structures, see: Stults et al. (1979); Swarnabala et al. (1994).

Experimental

Crystal data

[Mn(C₅H₇O₂)₂(NCS)(CH₄O)] $M_r = 343.27$ Monoclinic, $P2_1/n$ a = 7.4795 (13) Åb = 12.420 (2) Å c = 17.586 (3) Å $\beta = 98.673 \ (4)^{\circ}$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\min} = 0.824, \ T_{\max} = 0.869$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.058$	H atoms treated by a mixture of
$wR(F^2) = 0.148$	independent and constrained
S = 0.91	refinement
2830 reflections	$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
189 parameters	$\Delta \rho_{\rm min} = -0.33 \text{ e } \text{\AA}^{-3}$

Table 1

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ $D - H \cdot \cdot \cdot A$ $O5-H5A\cdots S1^{i}$ 0.78(7)2.51 (6) 3.281 (4) 168(7)Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2333).

References

- Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stults, B. R., Day, R. O., Marianelli, R. S. & Day, V. W. (1975). Inorg. Chem. 14, 722-730.
- Stults, B. R., Day, R. O., Marianelli, R. S. & Day, V. W. (1979). Inorg. Chem. 18, 1847-1852.
- Swarnabala, G., Reddy, K. R., Tirunagar, J. & Rajasekharan, M. V. (1994). Transition Met. Chem. 19, 506-508.

supplementary materials

Acta Cryst. (2008). E64, m1363 [doi:10.1107/S1600536808031589]

Bis(acetylacetonato- $\kappa^2 O, O'$)(methanol- κO)(thiocyanato- κN)manganese(III)

S.-M. Meng, H. Xie, Y.-Q. Fan and Y. Guo

Comment

Octahedral complexes of high-spin Mn^{III} are good examples for investigating the Jahn-Teller distortions, because their geometry are always distorted from the ideal octahedron to the distorted one by the axial ligands. Here, we report the structure of an octahedral Mn^{III} complex, whose synthesis has been reported early (Stults *et al.*, 1975).

The molecular structure of the title complex is shown in Figure 1. The Mn^{III} atom is six coordinated by five O atoms and one N atom. The geometry can be described as a distorted octahedron. Four equational positions are occupied by four O atoms coming from two acetylacetonate ligands with the average Mn—O bond length 1.909 Å, which is in agreement well with the corresponding distance in [Mn(acac)₂(OH₂)₂]ClO₄].2H₂O. (Swarnabala *et al.*, 1994). One SCN⁻ ion and one methanol molecule are coordinated to the Mn^{III} atom with *trans* positions, so that forming an octahedral geometry. The distance of Mn—O_{methanol} [2.289 (5) Å] is obviously longer than the bond lengths of Mn—O_{acetylacetonate}. The bond length of Mn—N_{SCN} is 2.187 (6) Å, which is also consistent with that found in [Mn(acac)₂(SCN)] (Stults *et al.*, 1979). In the crystal structure, a molecular chain along the [101] direction is formed by an intermolecular H-bond between the O atom of the methanol molecule and the S atom of the SCN⁻ ion (Table 1).

Experimental

The title complex was synthesized according to the literature method (Stults *et al.* 1975). The single crystals suitable for X-ray diffraction were grown from a methanol solution after the solvent was partial evaporated. Anal. Calcd for $C_{12}H_{18}MnNO_5S$: C 41.99, H 5.29, N 4.08; found: C 42.04, H 5.26, N, 4.11.

Refinement

The O-bound H atom of the methanol molecule was located in a difference Fourier map and its coordinates were refined, with $U_{iso}(H) = 1.5U_{eq}(O)$. The H atoms bound to C atoms were placed geometrically (C—H = 0.93–0.96 Å) and were refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figures

Fig. 1. A view of the title complex with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted.

$Bis(acetylacetonato{-}\kappa^2O,O')(methanol{-}\kappa O)(thiocyanato{-}\kappa N)manganese(III)$

Crystal data

[Mn(C ₅ H ₇ O ₂) ₂ (NCS)(CH ₄ O)]	$F_{000} = 712$
$M_r = 343.27$	$D_{\rm x} = 1.412 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/n$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P2yn	Cell parameters from 1347 reflections
<i>a</i> = 7.4795 (13) Å	$\theta = 2.8? - 16.2^{\circ}$
b = 12.420 (2) Å	$\mu = 0.96 \text{ mm}^{-1}$
c = 17.586 (3) Å	T = 293 (2) K
$\beta = 98.673 \ (4)^{\circ}$	Block, brown
$V = 1614.9 (5) \text{ Å}^3$	$0.21\times0.19\times0.15~mm$
Z = 4	

Data collection

Bruker APEXII CCD area-detector diffractometer	2830 independent reflections
Radiation source: fine-focus sealed tube	1276 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.112$
T = 293(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2000)	$h = -8 \rightarrow 8$
$T_{\min} = 0.824, T_{\max} = 0.869$	$k = -14 \rightarrow 14$
7925 measured reflections	$l = -16 \rightarrow 20$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement

$R[F^2 > 2\sigma(F^2)] = 0.058$	$w = 1/[\sigma^2(F_o^2) + (0.0541P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.148$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 0.91	$\Delta \rho_{max} = 0.33 \text{ e} \text{ Å}^{-3}$
2830 reflections	$\Delta \rho_{min} = -0.33 \text{ e} \text{ Å}^{-3}$
189 parameters	Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

									. 7
Fractional	atomic	coordinates	and isoti	onic o	r eauivalent	isotronic	displacement	narameters	(\dot{A}^2)
1 ruciionui	utomic	coordinates	unu ison	opic of	cquivaicni	isonopie	uspiacemeni	parameters	(11)

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
Mn	0.86466 (12)	0.33696 (7)	0.64488 (5)	0.0398 (3)
S1	1.1860 (3)	0.34036 (15)	0.90976 (10)	0.0749 (7)
01	1.0806 (5)	0.3054 (3)	0.6035 (2)	0.0504 (12)
O2	0.7813 (5)	0.1923 (3)	0.6275 (2)	0.0446 (11)
O3	0.6418 (5)	0.3674 (3)	0.6806 (2)	0.0458 (11)
O4	0.9347 (5)	0.4844 (3)	0.6515 (2)	0.0485 (12)
O5	0.7201 (7)	0.3709 (4)	0.5230 (3)	0.0682 (16)
H5A	0.701 (11)	0.325 (6)	0.491 (4)	0.102*
C1	1.0772 (9)	0.3201 (5)	0.8239 (4)	0.0455 (17)
C2	0.7403 (12)	0.4605 (6)	0.4764 (4)	0.100 (3)
H2A	0.7848	0.5205	0.5082	0.150*
H2B	0.6253	0.4788	0.4471	0.150*
H2C	0.8245	0.4437	0.4420	0.150*
C3	1.3234 (9)	0.2126 (6)	0.5642 (5)	0.084 (3)
H3A	1.3176	0.2455	0.5144	0.126*
H3B	1.3652	0.1398	0.5620	0.126*
НЗС	1.4055	0.2524	0.6011	0.126*
C4	1.1395 (9)	0.2130 (6)	0.5877 (4)	0.0491 (17)
C5	1.0421 (9)	0.1195 (5)	0.5885 (4)	0.0537 (19)
Н5	1.0977	0.0559	0.5768	0.064*
C6	0.8682 (10)	0.1122 (5)	0.6054 (3)	0.0472 (18)
C7	0.7645 (9)	0.0081 (4)	0.5966 (4)	0.061 (2)
H7A	0.7050	-0.0029	0.6407	0.091*
H7B	0.8463	-0.0504	0.5924	0.091*

supplementary materials

H7C	0.6758	0.0110	0.5511	0.091*
C8	0.4019 (8)	0.4572 (5)	0.7255 (4)	0.058 (2)
H8A	0.3125	0.4324	0.6842	0.088*
H8B	0.3704	0.5280	0.7408	0.088*
H8C	0.4067	0.4089	0.7684	0.088*
C9	0.5827 (8)	0.4605 (5)	0.6990 (3)	0.0415 (16)
C10	0.6804 (9)	0.5539 (5)	0.6967 (4)	0.0531 (19)
H10	0.6281	0.6168	0.7118	0.064*
C11	0.8462 (10)	0.5633 (5)	0.6743 (4)	0.0510 (18)
C12	0.9380 (10)	0.6708 (5)	0.6760 (5)	0.092 (3)
H12A	1.0490	0.6684	0.7114	0.138*
H12B	0.8603	0.7250	0.6922	0.138*
H12C	0.9636	0.6880	0.6255	0.138*
N1	0.9996 (8)	0.3080 (5)	0.7624 (3)	0.0617 (17)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn	0.0393 (6)	0.0339 (5)	0.0471 (6)	-0.0035 (5)	0.0093 (4)	-0.0032 (5)
S1	0.1019 (17)	0.0683 (13)	0.0490 (12)	-0.0013 (13)	-0.0060 (11)	0.0010 (11)
01	0.043 (3)	0.046 (3)	0.065 (3)	-0.007 (2)	0.017 (2)	-0.012 (2)
O2	0.043 (3)	0.035 (2)	0.055 (3)	-0.003 (2)	0.005 (2)	-0.004 (2)
O3	0.041 (3)	0.041 (2)	0.057 (3)	-0.001 (2)	0.013 (2)	-0.003 (2)
O4	0.052 (3)	0.034 (2)	0.063 (3)	-0.003 (2)	0.016 (2)	-0.005 (2)
O5	0.090 (4)	0.069 (4)	0.043 (3)	-0.006 (3)	0.001 (3)	0.000 (3)
C1	0.041 (4)	0.042 (4)	0.056 (5)	-0.002 (3)	0.015 (4)	0.006 (4)
C2	0.135 (8)	0.097 (7)	0.061 (6)	-0.012 (6)	-0.003 (5)	0.024 (5)
C3	0.052 (5)	0.096 (6)	0.108 (7)	0.002 (4)	0.029 (5)	-0.041 (5)
C4	0.045 (5)	0.057 (4)	0.044 (4)	0.005 (4)	0.001 (3)	-0.013 (4)
C5	0.049 (5)	0.040 (4)	0.073 (5)	0.008 (4)	0.011 (4)	-0.010 (4)
C6	0.064 (5)	0.042 (4)	0.034 (4)	-0.002 (4)	0.001 (4)	-0.007(3)
C7	0.076 (5)	0.038 (4)	0.066 (5)	-0.009 (4)	0.004 (4)	-0.007 (4)
C8	0.048 (5)	0.072 (5)	0.059 (5)	0.001 (4)	0.022 (4)	-0.014 (4)
C9	0.043 (4)	0.048 (4)	0.031 (4)	0.005 (3)	0.001 (3)	-0.006(3)
C10	0.073 (6)	0.036 (4)	0.055 (5)	0.001 (4)	0.026 (4)	-0.011 (3)
C11	0.063 (5)	0.042 (4)	0.051 (5)	-0.010 (4)	0.019 (4)	-0.001 (4)
C12	0.109 (7)	0.039 (4)	0.140 (8)	-0.012 (5)	0.061 (6)	-0.015 (5)
N1	0.062 (4)	0.067 (4)	0.054 (4)	-0.015 (3)	0.001 (3)	0.003 (3)

Geometric parameters (Å, °)

Mn—O4	1.903 (4)	С3—НЗС	0.9600
Mn—O2	1.911 (4)	C4—C5	1.372 (8)
Mn—O3	1.906 (4)	C5—C6	1.380 (8)
Mn—O1	1.910 (4)	С5—Н5	0.9300
Mn—N1	2.189 (6)	C6—C7	1.505 (8)
Mn—O5	2.289 (5)	С7—Н7А	0.9600
S1—C1	1.623 (8)	С7—Н7В	0.9600
O1—C4	1.275 (6)	С7—Н7С	0.9600

O2—C6	1.280 (7)	C8—C9	1.495 (8)
O3—C9	1.296 (6)	C8—H8A	0.9600
O4—C11	1.281 (7)	С8—Н8В	0.9600
O5—C2	1.405 (8)	C8—H8C	0.9600
O5—H5A	0.80 (7)	C9—C10	1.375 (8)
C1—N1	1.157 (7)	C10—C11	1.361 (8)
C2—H2A	0.9600	C10—H10	0.9300
C2—H2B	0.9600	C11—C12	1.501 (8)
C2—H2C	0.9600	C12—H12A	0.9600
C3—C4	1.494 (8)	C12—H12B	0.9600
С3—НЗА	0.9600	C12—H12C	0.9600
С3—Н3В	0.9600		
04—Mn—O2	173.85 (19)	01-C4-C5	123.9 (6)
04—Mn—03	92.02 (17)	01	115.2 (6)
02—Mn—03	87 66 (16)	$C_{5} - C_{4} - C_{3}$	120.8 (6)
04—Mn—01	88 83 (17)	C4C6	125.2 (6)
O2-Mn-O1	91.17 (17)	C4—C5—H5	117.4
$O_3 = Mn = O_1$	176 83 (18)	С6—С5—Н5	117.4
04—Mn—N1	91.0 (2)	02-C6-C5	123.6 (6)
Ω^2 —Mn—N1	95 16 (19)	02 - C6 - C7	114 9 (6)
O_3 —Mn—N1	91 32 (19)	$C_{5} - C_{6} - C_{7}$	121.5 (6)
O1-Mn-N1	91.7 (2)	C6—C7—H7A	109.5
04—Mn—05	88.09 (17)	С6—С7—Н7В	109.5
02—Mn—05	85.76 (18)	H7A—C7—H7B	109.5
03—Mn—05	87 65 (18)	С6—С7—Н7С	109.5
01—Mn—05	89 33 (18)	H7A—C7—H7C	109.5
N1—Mn—O5	178.6 (2)	H7B—C7—H7C	109.5
C4—O1—Mn	127.4 (4)	C9—C8—H8A	109.5
C6—O2—Mn	127.6 (4)	С9—С8—Н8В	109.5
C9—O3—Mn	127.4 (4)	H8A—C8—H8B	109.5
C11—O4—Mn	127.2 (4)	С9—С8—Н8С	109.5
C2—O5—Mn	128.0 (4)	H8A—C8—H8C	109.5
С2—О5—Н5А	100 (6)	H8B—C8—H8C	109.5
Mn—O5—H5A	123 (6)	O3—C9—C10	122.8 (6)
N1—C1—S1	178.5 (7)	03—C9—C8	114.3 (5)
O5—C2—H2A	109.5	C10—C9—C8	122.9 (6)
Н5А—С2—Н2А	136.0	C11—C10—C9	126.3 (6)
O5—C2—H2B	109.5	C11—C10—H10	116.8
H5A—C2—H2B	98.6	С9—С10—Н10	116.8
H2A—C2—H2B	109.5	O4—C11—C10	124.2 (6)
O5—C2—H2C	109.5	O4—C11—C12	115.5 (6)
H5A—C2—H2C	91.3	C10-C11-C12	120.3 (6)
H2A—C2—H2C	109.5	C11—C12—H12A	109.5
H2B—C2—H2C	109.5	C11—C12—H12B	109.5
С4—С3—НЗА	109.5	H12A—C12—H12B	109.5
C4—C3—H3B	109.5	C11—C12—H12C	109.5
НЗА—СЗ—НЗВ	109.5	H12A—C12—H12C	109.5
С4—С3—Н3С	109.5	H12B—C12—H12C	109.5
НЗА—СЗ—НЗС	109.5	C1—N1—Mn	162.9 (6)

supplementary materials

НЗВ—СЗ—НЗС	109.5				
O4—Mn—O1—C4	174.8 (5)		Mn-01-C4-C5		9.1 (9)
O2—Mn—O1—C4	-11.4 (5)		Mn-O1-C4-C3		-173.5 (4)
N1—Mn—O1—C4	83.8 (5)		O1—C4—C5—C6		0.8 (11)
O5—Mn—O1—C4	-97.1 (5)		C3—C4—C5—C6		-176.4 (6)
O3—Mn—O2—C6	-175.2 (5)		Mn-O2-C6-C5		-1.7 (8)
O1—Mn—O2—C6	7.7 (5)		Mn-02-C6-C7		-179.7 (4)
N1—Mn—O2—C6	-84.2 (5)		C4—C5—C6—O2		-4.7 (10)
O5—Mn—O2—C6	96.9 (5)		C4—C5—C6—C7		173.2 (6)
O4—Mn—O3—C9	0.7 (5)		Mn-O3-C9-C10		-1.7 (8)
O2—Mn—O3—C9	-173.2 (5)		Mn-O3-C9-C8		-179.9 (3)
N1—Mn—O3—C9	91.7 (5)		O3—C9—C10—C11		1.3 (10)
O5—Mn—O3—C9	-87.3 (5)		C8—C9—C10—C11		179.4 (6)
O3—Mn—O4—C11	0.8 (5)		Mn-O4-C11-C10		-1.3 (9)
O1—Mn—O4—C11	177.8 (5)		Mn-04-C11-C12		177.7 (4)
N1-Mn-O4-C11	-90.5 (5)		C9—C10—C11—O4		0.3 (11)
O5—Mn—O4—C11	88.4 (5)		C9—C10—C11—C12		-178.7 (6)
O4—Mn—O5—C2	15.3 (5)		O4—Mn—N1—C1		5.2 (18)
O3—Mn—O5—C2	107.5 (5)		O3—Mn—N1—C1		-86.9 (18)
O1—Mn—O5—C2	-73.5 (5)		O1—Mn—N1—C1		94.0 (18)
O2—Mn—O5—C2	-164.7 (5)		O2—Mn—N1—C1		-174.6 (18)
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	H···A	$D \cdots A$	D—H···A

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O5—H5A···S1 ⁱ	0.78 (7)	2.51 (6)	3.281 (4)	168 (7)
Symmetry codes: (i) $x-1/2$, $-y+1/2$, $z-1/2$.				

Fig. 1